3D Orbital Mechanics App
details
summary
A 3D app to study orbital mechanics with kid-friendly controls and fun learning modules.
prompt
Create a simple application to study orbital mechanics with the ability to control orbits. Ensure it is in 3D and clear enough for an 8-year-old child to understand. Project Overview: - Develop a 3D visual application focusing on orbital mechanics, designed to be intuitive and educational for young children. - Include an educational module explaining Lagrange Points in a simple, playful style, such as by using a cat character for demonstration. UI/UX Design and Flow: - Design an engaging, child-friendly interface with bright colors and clear labels. - Create interactive elements like sliders to control orbit radii, providing immediate visual feedback. - Ensure animations are smooth and orbits are visually distinct and easy to understand. Core Functionality and Logic: - Animate all objects to move along their designated orbits continuously. - Implement adjustable orbit parameters via sliders, allowing real-time changes to the visualization. - Visualize orbit trajectories using thin lines or animated paths to depict movements around celestial bodies. Best Practices: - Ensure the application is responsive and performs smoothly on various devices. - Test the simplicity and clarity of the instructional content with a target audience of young children to ensure understanding. - Optimize 3D rendering to prevent lag and maintain user engagement. Include resources like image assets for celestial bodies and tools to facilitate 3D animation and visualization. Design control systems that are intuitive and labeled clearly for ease of use.
original prompt
Создай простое приложение для изучения орбитально механики с возможностьюь контроля орбит итд. все должно быть в 3д и наглядно чтобы даже 8 летний ребенок понял. LAGRANGE POINTS EXPLAINED BY A CAT Lagrange Points are spots where gravity and motion balance out. L1, L2, L3 sit on the line. L1: between Earth and Moon. L3: beyond Moon. L3: opposite Earth. L2 - L5 L3 L4 and L5 form equilateral triangles with Earth and Moon. Stable zones-gravity traps for space chill. # Обязательно все обьекты должны двигаться по своим орбитам. # Нужно визуализировать траектории тонкой линией # Нужны контролы, чтобы можно было изменять радиусы орбит всех планет и динамически менять визуализацию Q: What specific controls do you want for adjusting the orbits? A: Slider for orbit radius adjustment for each planet. Q: What type of visual elements do you envision for the trajectories? A: Thin lines or animated paths showing orbit trajectories.
generation cost summary
model name: o3-mini-high
response time: 43.21 sec.
result tokens: 7,233
cost: $0.03255120